[1]黄 南,吴智勇,王 雄,等.基于SiC模块的地铁走行风冷系统设计[J].机车电传动,2020,(05):62-66.[doi:10.13890/j.issn.1000-128x.2020.05.014]
 HUANG Nan,WU Zhiyong,WANG Xiong,et al.Design of Running Air-cooling System for Subway Based on SiC Module[J].Electric Drive for Locomotives,2020,(05):62-66.[doi:10.13890/j.issn.1000-128x.2020.05.014]
点击复制

基于SiC模块的地铁走行风冷系统设计()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年05期
页码:
62-66
栏目:
SiC技术
出版日期:
2020-09-10

文章信息/Info

Title:
Design of Running Air-cooling System for Subway Based on SiC Module
文章编号:
1000-128X(2020)05-0062-05
作者:
黄 南1吴智勇1王 雄1宋郭蒙1饶沛南2丁 云1
(1. 中车株洲电力机车研究所有限公司,湖南 株洲 412001;2. 株洲中车时代电气股份有限公司, 湖南 株洲 412001)
Author(s):
HUANG Nan1 WU Zhiyong1 WANG Xiong1 SONG Guomeng1 RAO Peinan2 DING Yun1
( 1. CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China;2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
地铁车辆SiC热管散热器数值仿真走行风冷
Keywords:
subway vehicle SiC heat pipe radiator numerical simulation running air-cooling
分类号:
U231
DOI:
10.13890/j.issn.1000-128x.2020.05.014
文献标志码:
A
摘要:
SiC器件凭借高开关频率和低损耗的性能优势,在新一代地铁变流器中日益受到重视,并逐步得到推广应用。针对基于SiC器件的地铁变流器模块,对其走行风冷散热系统进行设计,搭建了大风道试验平台模拟走行风冷,并通过对地铁车辆底部实物建模仿真,对比验证大风道试验的可行性和准确性,同时分析了车体布局对散热性能的影响,为地铁走行风冷散热系统的设计提供指导性建议。
Abstract:
With the advantages of high switching frequency and low loss, SiC devices have been paid more and more attention in the new generation of metro converters, and have been gradually popularized and applied. Aiming at SiC-device-based metro converter module, the running air-cooling system was designed, and the wind tunnel test platform was built to simulate the running air cooling. Through the modeling and simulation of the subway vehicle bottom objects, the feasibility and accuracy of the wind tunnel test were compared and verified. At the same time, the influence of the car body layout on the heat dissipation performance was analyzed, which provided guidance for the design of the subway running air cooling system.

参考文献/References:

[1] 高云斌, 李诚瞻, 蒋华平. SiC MOSFET芯片设计关键技术及发展趋势[J]. 大功率变流技术, 2017(1): 33-38.[2] SASAKI K, SATO S, MATSUI K, et al. 40 kW/L high switching frequency three-phase AC 400 V all-SiC inverter[J]. Materials Science Forum, 2013, 740/741/742: 1081-1084.[3] KATO F, NAKAGAWA H, YAMAGUCHI H, et al. High-temperature transient thermal analysis for SiC power modules[J]. Materials Science Forum, 2016, 858: 1078-1081.[4] KATO F, REJEKI S, LANG F, et al. 250℃-Operated sandwich-structured all-SiC power module[J]. Japanese Journal of Applied Physics, 2015, 54: 04DP06. DOI: 10.7567/JJAP.54.04DP06.[5] ANZAI T, MURAKAMI Y, SATO S, et al. Sandwich structured power module for high temperature SiC power semiconductor devices[J]. International Symposium on Microelectronics, 2014(1): 757-762.[6] HULL B A, HENNING J, JONAS C, et al. 1700V 4H-SiC MOSFETs and schottky diodes for next generation power conversion applications[C]//IEEE. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Fort Worth: IEEE, 2011: 1042-1048. DOI: 10.1109/APEC.2011.5744723.[7] 潘三博, 郝夏斐. 采用碳化硅器件的高效率光伏逆变器研究[J]. 制造业自动化, 2011, 33(8): 131-133.[8] BRENNA M, FOIADELLI F, ZANINELLI D, et al. Application prospective of silicon carbide(SiC) in railway vehicles[C]//IEEE. 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer. Trieste: IEEE, 2014: 1-6. DOI: 10.1109/AEIT.2014.7002062.[9] WATANABE T. Trend of railway technologies and power semiconductor devices[C]//IEEE. 11th International Symposium on Power Semiconductor Devices and ICs. Toronto: IEEE, 1999: 11-18. DOI: 10.1109/ISPSD.1999.764032.[10] ISHIKAWA K, YUKUTAKA S, OGAWA K, et al. Traction inverter that applies compact 3.3 kV/1200 A SiC hybrid module[C]//IEEE. 2014 International Power Electronics Conference. Hiroshima: IEEE, 2014: 2140-2144. DOI: 10.1109/IPEC.2014.6869884.

相似文献/References:

[1]杨晓林,王烟平.地铁车辆辅助逆变器过流保护的原因分析及改进[J].机车电传动,2015,(03):82.[doi:10.13890/j.issn.1000-128x.2015.03.023]
[2]严志勇,曾明高,罗国永,等.地铁车辆辅助逆变器的并网控制[J].机车电传动,2015,(04):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
 YAN Zhiyong,ZENG Minggao,LUO Guoyong,et al.Parallel Control of Auxiliary Inverters for Metro Vehicle[J].Electric Drive for Locomotives,2015,(05):59.[doi:10.13890/j.issn.1000-128x.2015.04.016]
[3]张兴宝,唐家龙,李 涛.西安地铁2 号线车辆司控器级位错乱故障的原因分析及整改方案[J].机车电传动,2015,(05):84.[doi:10.13890/j.issn.1000-128x.2015.05.023]
[4]陈 燕.受电弓状态动态检测系统在成都地铁2 号线的应用[J].机车电传动,2015,(05):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
 CHEN Yan.Application of the Pantograph Dynamic Detection System in Chengdu Metro Line 2[J].Electric Drive for Locomotives,2015,(05):91.[doi:10.13890/j.issn.1000-128x.2015.05.025]
[5]刘高坤,张江,王树森,等.直线电机地铁车辆动力学性能仿真研究的新方法[J].机车电传动,2015,(02):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
 LIU Gaokun,ZHANG Jiang,WANG Shusen,et al.New Method of Dynamics Performance Simulation for Metro Vehicle with Linear Motor[J].Electric Drive for Locomotives,2015,(05):103.[doi:10.13890/j.issn.1000-128x.2015.02.025]
[6]王寿峰,由建宏.地铁车辆空气弹簧压力急升引起总风欠压开关动作的对策[J].机车电传动,2014,(06):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
 WANG Shoufeng,YOU Jianhong.Measures of Air Spring Pressure Rapid Rising Resulting in Main Air Switch Triggered for Metro Vehicle[J].Electric Drive for Locomotives,2014,(05):78.[doi:10.13890/j.issn.1000-128x.2014.06.021]
[7]张大勇.电力电子技术发展与电气牵引创新[J].机车电传动,2014,(05):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
 ZHANG Dayong.Development of Power Electronics Technology and Innovation of Electrical Traction[J].Electric Drive for Locomotives,2014,(05):1.[doi:10.13890/j.issn.1000-128x.2014.05.001]
[8]江 伟,张薇琳,王伟陈.地铁车辆辅助逆变器并联供电模式分析[J].机车电传动,2015,(06):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
 JIANG Wei,ZhANG Weilin,WANG Weichen.Analysis of Parallel Operation Power Supply for Metro Vehicle Auxiliary Inverter[J].Electric Drive for Locomotives,2015,(05):63.[doi:10.13890/j.issn.1000-128x.2015.06.017]
[9]周晓明,肖华,陈超录.长沙地铁2号线车辆三大核心系统集成[J].机车电传动,2014,(04):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
 ZHOU Xiao-ming,XIAO Hua,CHEN Chao-lu.Three Core Systems Integration in Changsha Metro Line 2[J].Electric Drive for Locomotives,2014,(05):1.[doi:10.13890/j.issn.1000-128x.2014.04.001]
[10]马喜成,李梁,刘家栋,等.地铁车辆客室门门间距取值分析与建议[J].机车电传动,2014,(04):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]
 MA Xi-cheng,LI Liang,LIU Jia-dong,et al.Analysis and Suggestion on Distances between the Centers of Adjacent Passenger Doors for Metro Vehicle[J].Electric Drive for Locomotives,2014,(05):65.[doi:10.13890/j.issn.1000-128x.2014.04.017]

备注/Memo

备注/Memo:
作者简介:黄 南(1983—),男,硕士,高级工程师,研究方向为大功率变流技术与应用。
更新日期/Last Update: 2020-09-10