[1]陈志贤,池茂儒,吴兴文,等.高温超导磁悬浮车辆曲线通过动态特性分析[J].机车电传动,2020,(04):70-75.[doi:10.13890/j.issn.1000-128x.2020.04.014]
 CHEN Zhixian,CHI Maoru,WU Xingwen,et al.Analysis of Dynamic Characteristics of High TemperatureSuperconducting Maglev Vehicle in Curve Passing[J].Electric Drive for Locomotives,2020,(04):70-75.[doi:10.13890/j.issn.1000-128x.2020.04.014]
点击复制

高温超导磁悬浮车辆曲线通过动态特性分析()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年04期
页码:
70-75
栏目:
研 究 开 发
出版日期:
2020-07-10

文章信息/Info

Title:
Analysis of Dynamic Characteristics of High TemperatureSuperconducting Maglev Vehicle in Curve Passing
文章编号:
1000-128X(2020)04-0070-06
作者:
陈志贤1池茂儒1吴兴文2李忠继3刘开成1韩霄翰4
(1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031;2.西南交通大学 机械工程学院,四川 成都 610031;3.中铁二院工程集团有限责任公司,四川 成都 610031;4.华中光电技术研究所 武汉光电国家研究中心,湖北 武汉 430223)
Author(s):
CHEN Zhixian1 CHI Maoru1 WU Xingwen2 LI Zhongji3 LIU Kaicheng1 HAN Xiaohan4
( 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;3. China Railway Eryuan Engineering Group Co. ,
关键词:
高温超导悬浮车辆曲线通过动力学模型缓和曲线仿真
Keywords:
HTS maglev curve passing dynamic model transition curve simulation
分类号:
U237
DOI:
10.13890/j.issn.1000-128x.2020.04.014
文献标志码:
A
摘要:
为提高高温超导磁悬浮车辆曲线通过性能,针对悬挂系统和高温超导悬浮导向力的非线性特性,建立了高温超导磁悬浮车辆横垂耦合动力学模型,分析了高温超导磁悬浮车辆悬浮架曲线通过性能,对比了车辆通过有无超高曲线时悬浮杜瓦横向和垂向位移。仿真结果表明,车辆在通过有超高曲线时,在缓和曲线路段,原H型构架由于无一系悬挂,难以适应曲线路段的线路扭曲,使得局部杜瓦垂向位移较大。为此,对悬浮架设计方案提出了优化措施,并对优化方案进行仿真分析。结果表明,采用增设橡胶垫等方式可增加H型构架纵梁与横梁之间的点头自由度,以及增设杜瓦与H型构架之间的一系悬挂对改善车辆的曲线通过能力均有效果,并且后者效果更为明显。综合2种优化方案,提出了有利于高温超导磁悬浮车辆曲线通过的悬浮架结构方案。
Abstract:
In order to improve the curve passing performance of HTS(high-temperature superconducting) maglev vehicle, aiming at the nonlinear characteristics of suspension system and high-temperature superconducting levitation and guidance force, the dynamic model of HTS maglev vehicle which coupled lateral and vertical was established. The curve passing performance of suspension frame of HTS maglev vehicle was analyzed, and the lateral and vertical displacement of dewar were compared when the vehicle passed through the curve with or without superelevation. The simulation results show that the original H-frame is difficult to adapt to the line distortion of the transition curve section because there is no primary suspension when the vehicle passeing through the curve with superelevation, which makes some of the vertical displacement of dewar larger. Therefore, the optimization measures were carried out for the design scheme of suspension frame, and the analysis of the optimization scheme was given. The results show that adding rubber pad can increase the nodding freedom between longitudinal and horizontal beam of H-frame. Furthermore, adding primary suspension between dewar and H-frame can improve the curve passing ability of vehicles. In addition, the effect of adding primary suspension is better. A suspension frame structure scheme which is beneficial to the curve passing of HTS maglev vehicle is carried out combining the two optimization schemes.

参考文献/References:

[1] 王家素, 王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报, 2015, 10(11): 1-10.

[2] 邓斌, 陈武, 邓自刚, 等. 新型高温超导磁浮车辆通过曲线时的运动学规律[J]. 城市轨道交通研究, 2019, 22(5): 34-38.
[3] 宋宏海. 对称和非对称外场中高温超导体YBCO电磁特性研究[D]. 成都: 西南交通大学, 2011.
[4] 王晓融. 高温超导YBCO块材在永磁导轨上方导向力的研究[D]. 成都: 西南交通大学, 2011.
[5] 任仲友. 永磁导轨上高温超导磁悬浮的实验研究与数值计算[D]. 成都: 西南交通大学, 2005.
[6] 苟晓凡. 高温超导悬浮体的静、动力特性分析[D]. 兰州: 兰州大学, 2005.[7] 马光同. 高温超导磁悬浮三维理论模型及其数值计算研究[D]. 成都: 西南交通大学, 2010.
[8] 蒋冬辉. 永磁轨道上块状高温超导体的振动特性研究[D]. 成都: 西南交通大学, 2015.
[9] 郑珺. 平移对称式高温超导磁悬浮系统的动态特性[D]. 成都: 西南交通大学, 2008.
[10] 邓自刚. 运动外磁场下高温超导YBCO块材的动态悬浮特性实验研究[D]. 成都: 西南交通大学, 2010.
[11] 勾艳凤. 高温超导磁悬浮车环形线振动特性研究[D]. 成都: 西南交通大学, 2015.
[12] 李海涛. 高温超导磁悬浮试验车振动特性研究[D]. 成都: 西南交通大学, 2017.
[13] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329-334.
[14] 邓自刚, 郑珺, 李婧, 等. 超导块材磁体在高温超导磁悬浮车系统中的两种潜在应用[J]. 稀有金属材料与工程, 2008, 37(增刊4): 350-354.

相似文献/References:

[1]李石平,刘启灵.独立旋转车轮打磨小车曲线通过分析[J].机车电传动,2014,(05):15.[doi:10.13890/j.issn.1000-128x.2014.05.004]
 LI Shiping,LIU Qiling.Curve-passing Analysis of Grinding Car with Independent Rotation Wheels[J].Electric Drive for Locomotives,2014,(04):15.[doi:10.13890/j.issn.1000-128x.2014.05.004]
[2]李晓龙,马卫华,罗世辉,等.径向转向架机车动力学特性分析[J].机车电传动,2013,(06):28.
 LI Xiao-long,MA Wei-hua,LUO Shi-hui,et al.Dynamic Performance Analysis of Radial Bogie Locomotive[J].Electric Drive for Locomotives,2013,(04):28.
[3]顾建华,杨峰,刘启灵.PGM-48钢轨打磨小车曲线通过性能分析及改进[J].机车电传动,2013,(06):91.
 GU Jian-hua,YANG Feng,LIU Qi-ling.Curve Passing Performance Analysis and Improvementfor PGM-48 Rail Grinding Car[J].Electric Drive for Locomotives,2013,(04):91.
[4]刘高坤.电磁力对直线电机地铁车辆曲线通过性能的影响[J].机车电传动,2016,(05):85.[doi:10.13890/j.issn.1000-128x.2016.05.021]
 LIU Gaokun.Influence of Electromagnetic Force on Curve PassingDynamic Performance of LIM Metro Vehicle[J].Electric Drive for Locomotives,2016,(04):85.[doi:10.13890/j.issn.1000-128x.2016.05.021]
[5]邹建军,黄志辉. 基于SIMPACK 建模的某特种车辆动力学计算结果的后处理分析[J].机车电传动,2019,(01):1.[doi:10.13890/j.issn.1000-128x.2019.01.124]
 ZOU Jianjun,HUANG Zhihui. Post Processing Analysis of Dynamic Calculation Results of a Special Vehicle Based on SIMPACK Model[J].Electric Drive for Locomotives,2019,(04):1.[doi:10.13890/j.issn.1000-128x.2019.01.124]
[6]邹建军,黄志辉.基于SIMPACK建模的某特种车辆动力学计算结果的后处理分析[J].机车电传动,2019,(01):61.[doi:10.13890/j.issn.1000-128x.2019.01.124]
 ZOU Jianjun,HUANG Zhihui.Post Processing Analysis of Dynamic Calculation Results of a Special Vehicle Based on SIMPACK Model[J].Electric Drive for Locomotives,2019,(04):61.[doi:10.13890/j.issn.1000-128x.2019.01.124]

备注/Memo

备注/Memo:
作者简介:陈志贤(1995—),男,硕士研究生,研究方向为磁悬浮车辆系统动力学。
更新日期/Last Update: 2020-07-10