[1]汪海燕,孙国栋,佘 鹏,等.高速动车组车端内风挡动力学特性试验研究[J].机车电传动,2020,(04):8-12.[doi:10.13890/j.issn.1000-128x.2020.04.002]
 WANG Haiyan,SUN Guodong,SHE Peng,et al.Experimental Study on Dynamic Characteristics of the Vehicle-endInner Windshield in High-speed EMUs[J].Electric Drive for Locomotives,2020,(04):8-12.[doi:10.13890/j.issn.1000-128x.2020.04.002]
点击复制

高速动车组车端内风挡动力学特性试验研究()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年04期
页码:
8-12
栏目:
试验检测技术
出版日期:
2020-07-10

文章信息/Info

Title:
Experimental Study on Dynamic Characteristics of the Vehicle-endInner Windshield in High-speed EMUs
文章编号:
1000-128X(2020)04-0008-05
作者:
汪海燕1孙国栋1佘 鹏1唐明赞2
(1. 中车青岛四方机车车辆股份有限公司 技术中心, 山东 青岛 266111;2. 中南大学 轨道交通安全教育部重点实验室,湖南 长沙 410075)
Author(s):
WANG Haiyan1 SUN Guodong1 SHE Peng1 TANG Mingzan2
( 1. R & D Center, CRRC Qingdao Sifang Co., Ltd., Qingdao, Shandong 266111, China;2. Key Laboratory of Traffic Safety on Track, Ministry of Education, Central South University, Changsha, Hunan 410075, China )
关键词:
高速动车组内风挡动力学特性模态试验实车试验高速列车
Keywords:
high-speed EMUs the inner windshield dynamic characteristics modal test field Test
分类号:
U292.91+4
DOI:
10.13890/j.issn.1000-128x.2020.04.002
文献标志码:
A
摘要:
开展高速动车组内风挡动力学特性研究是改善车端连接系统动力学性能的重要内容。首先,介绍了高速动车组车端内风挡系统,并采用模态试验的方法获得内风挡固有振动特性。其次,基于350 km/h速度等级高速动车组进行实车线路试验,对内风挡与安装框架进行了振动测试,对比分析外风挡有无间隙条件下内风挡与车端连接系统之间的动态关系。研究表明,高速动车组内风挡结构的前8阶固有振动频率之间数值接近,使得内风挡振动的主频范围增大,易受列车运行过程中的宽频激扰引发弹性共振。当列车外风挡无间隙时,内风挡结构在风挡框架的宽频振动激励下其多阶固有频率被激励,产生接近固有频率的弹性共振;当列车外风挡之间存在间隙时,空腔内压力变化频率使得内风挡产生强迫振动。研究可为内风挡疲劳寿命以及内风挡结构动力学性能设计提供参考。
Abstract:
Research on the dynamic characteristics of the vehicle-end inner windshield in high-speed EMUs is an important part of improving the dynamic performance of the vehicle-end connection system. The vehicle-end inner windshield system of high-speed EMUs was briefly introduced, and the natural vibration characteristics of the vehicle-end inner windshield was obtained through modal test. Based on the 350 km/h high-speed EMUs, the vibration test of the inner windshield and the mounting frame was carried out, and the dynamic relationship between the inner windshield and the vehicle end connection system was compared and analyzed whether or not the outer windshield had clearance. The research showed that the first eight natural vibration frequencies of the the vehicle-end inner windshield were close to each other, which made the main frequency range of the inner windshield vibration increase, and was susceptible to elastic resonance caused by broadband vibration during train operation. When there was no gap between the outer windshield, the multi-order natural frequency of the inner windshield was excited under the broadband vibration excitation of the windshield frame. When there was a gap between the outer windshield, the frequency of the pressure changed in the cavity caused the inner windshield to generate forced vibration. The study could provide reference for the design of the inner windshield fatigue life and the dynamic performance of the inner windshield structure.

参考文献/References:

[1] 张兰. 基于车端关系试验台的列车相邻车端运动姿态模拟及试验研究[D]. 长春: 吉林大学, 2017.

[2] 刘伟. 车端连接装置对高速列车运行平稳性的影响[J]. 铁道车辆, 2008, 46(3): 8-10.
[3] 王兴伟, 朱闰平, 缪惠勇, 等. 旅客列车风挡的发展方向[J]. 特种橡胶制品, 2014, 35(2): 79-84.
[4] 彭飞. 高速列车柔性车体系统动力学研究[D]. 兰州: 兰州交通大学, 2017.
[5] 李华, 忻力, 丁杰, 等. 地铁车辆地板振动异常的测试分析及优化改进[J]. 机车电传动, 2017(4): 69-72.
[6] TRUE H. On the theory of nonlinear dynamics and its application in vehicle systems dynamics[J]. Vehicle System Dynamics, 1999, 31 (5/6) 393-421.[7] CARLBOM P F. Combining MBS with FEM for rail vehicle dynamics analysis[J]. Multibody System Dynamics, 2001, 6(3): 291–300.
[8] 石怀龙, 屈升, 张大幅, 等. 高速动车组线路动力学响应特性研究[J]. 铁道学报, 2019, 41(10): 30-37.[9] 吴会超, 徐蕴, 石俊杰. 高速动车组车体异常振动的试验研究[J]. 机车电传动, 2014(4): 75-78.
[10] 葛会军, 李碧钰, 石东山, 等. 高速动车组用换气装置振动特性分析[J]. 机车电传动, 2017(2): 64-66.
[11] 卢先宝. 时速350公里中国标准动车组内风挡的研制[J]. 科技创新与应用, 2017(31): 32.
[12] KIM C S. Optimal design of gangway connections for the high speed railway vehicle[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2014, 15(7): 4087-4092.
[13] 谭莲影. 橡胶无卤阻燃配方研究及其在风挡产品上的应用[D]. 长沙: 国防科学技术大学, 2019.
[14] KANG G H, WOO C S, KIM C S. Durability evaluation of gangway connections for the high speed railway vehicles[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2014, 15(8): 4796-4801.
[15] 刘宏友, 魏晓东, 曾京, 等. 风挡连接装置对列车动力学性能的影响[J]. 交通运输工程学报, 2003, 3(2): 22-26.
[16] 全国机械振动与冲击标准化技术委员会. 振动与冲击 机械导纳的试验确定 第3部分:冲击激励法: GB/T 11349.3—2006[S]. 北京: 中国标准出版社, 2007.
[17] 张骄, 高小平, 李熙, 等. 基于试验模态分析的某型号动车组齿轮箱有限元模态分析研究[J]. 机电工程, 2015, 32(7): 958-961.
[18] 曾要争. 车下设备激励对车体模态匹配的影响[J]. 机车电传动, 2019(1): 109-113.
[19] 王伟. 高速列车车体工作模态试验与影响因素研究[J]. 机车电传动, 2018(2): 37-40.
[20] 国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.

相似文献/References:

[1]何 远,王 勇.抗蛇行减振器串联刚度对高速动车组运行稳定性的影响[J].机车电传动,2015,(03):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
 HE Yuan,WANG Yong.Influence of Anti-yaw Damper Series Stiffnesson Running Stability of High-speed EMUs[J].Electric Drive for Locomotives,2015,(04):26.[doi:10.13890/j.issn.1000-128x.2015.03.007]
[2]韦永全,张银环,周 佳,等.基于RFID 技术的高速动车组自动识别系统应用研究[J].机车电传动,2015,(04):34.[doi:10.13890/j.issn.1000-128x.2015.04.009]
 WEI Yongquan,ZHANG Yinhuan,ZHOU Jia,et al.Application Research of ATIS On-board System for High-speed EMUs Based on RFID Technology[J].Electric Drive for Locomotives,2015,(04):34.[doi:10.13890/j.issn.1000-128x.2015.04.009]
[3]张秋敏,汪星华,郝明远,等.高速动车组传感器烧毁原因分析[J].机车电传动,2014,(06):57.[doi:10.13890/j.issn.1000-128x.2014.06.015]
 ZHANG Qiumin,WANG Xinghua,HAO Mingyuan,et al.Sensors Burned Cause Analysis of High-speed EMUs[J].Electric Drive for Locomotives,2014,(04):57.[doi:10.13890/j.issn.1000-128x.2014.06.015]
[4]王艳,卜继玲,陈康,等.空气弹簧复合参数对垂向刚度特性的影响[J].机车电传动,2014,(05):34.[doi:10.13890/j.issn.1000-128x.2014.05.010]
 WANG Yan,BU Jiling,CHEN Kang,et al.Influence of Air Spring Composite Parameters on Vertical Stiffness Characteristics[J].Electric Drive for Locomotives,2014,(04):34.[doi:10.13890/j.issn.1000-128x.2014.05.010]
[5]徐 莉,王志春,周建烽.高速动车组噪声源分析[J].机车电传动,2015,(06):22.[doi:10.13890/j.issn.1000-128x.2015.06.006]
 XU Li,WANG Zhichun,ZHOU Jianfeng.Analysis of High-speed EMUs Noise Source[J].Electric Drive for Locomotives,2015,(04):22.[doi:10.13890/j.issn.1000-128x.2015.06.006]
[6]蔡丽,陈澍军,杜群威.高速动车组紧急制动系统的建模与仿真分析[J].机车电传动,2014,(04):17.[doi:10.13890/j.issn.1000-128x.2014.04.005]
 CAI Li,CHEN Shu-jun,DU Qun-wei.Modeling and Simulation Analysis of High-speed EMUs Emergency Brake System[J].Electric Drive for Locomotives,2014,(04):17.[doi:10.13890/j.issn.1000-128x.2014.04.005]
[7]吴会超,徐蕴,石俊杰.高速动车组车体异常振动的试验研究[J].机车电传动,2014,(04):75.[doi:10.13890/j.issn.1000-128x.2014.04.020]
 WU Hui-chao,XU Yun,SHI Jun-jie.Test Study on Carbody Abnormal Vibration of High-speed EMUs[J].Electric Drive for Locomotives,2014,(04):75.[doi:10.13890/j.issn.1000-128x.2014.04.020]
[8]符敏利,陈致初,王健,等.高速动车组永磁牵引电动机研制[J].机车电传动,2016,(03):1.[doi:10.13890/j.issn.1000-128x.2016.03.001]
 FU Minli,CHEN Zhichu,WANG Jian,et al.Development of Permanent Magnetic Traction Motors for High-speed EMUs[J].Electric Drive for Locomotives,2016,(04):1.[doi:10.13890/j.issn.1000-128x.2016.03.001]
[9]李英,徐练,李明高,等.高速动车组受电弓上臂顶管裂纹的分析及改进[J].机车电传动,2014,(03):110.[doi:10.13890/j.issn.1000-128x.2014.03.024]
[10]孙海燕,黄江彪,冯万盛,等.一种高速动车组用新型大径轴刚度比电机悬挂橡胶球铰的设计[J].机车电传动,2014,(02):54.[doi:10.13890/j.issn.1000-128x.2014.02.011]
 SUN Hai-yan,HUANG Jiang-biao,FENG Wan-sheng,et al.Design and Application of Motor Bushing with High Radial/Axial Stiffness Ratio Used in High-speed EMUs[J].Electric Drive for Locomotives,2014,(04):54.[doi:10.13890/j.issn.1000-128x.2014.02.011]

备注/Memo

备注/Memo:
作者简介:汪海燕(1976-),女,高级工程师,主要从事轨道车辆风挡、门窗等外部设备件的结构设计、动力学及强度研究。
更新日期/Last Update: 2020-07-10