[1]梁鑫,丁叁叁,黄 超,等.基于正态分布叠加原理的高速磁浮线路不平顺预测方法[J].机车电传动,2020,(06):20-24.[doi:10.13890/j.issn.1000-128x.2020.06.005]
 LIANG Xin,DING Sansan,HUANG Chao,et al.Prediction Method of Irregularity of High-speed Maglev Track Based on Normal Distribution Superposition Principle[J].Electric Drive for Locomotives,2020,(06):20-24.[doi:10.13890/j.issn.1000-128x.2020.06.005]
点击复制

基于正态分布叠加原理的高速磁浮线路不平顺预测方法()
分享到:

机车电传动[ISSN:1000-128X/CN:43-1125/U]

卷:
期数:
2020年06期
页码:
20-24
栏目:
磁浮技术专栏
出版日期:
2020-11-10

文章信息/Info

Title:
Prediction Method of Irregularity of High-speed Maglev Track Based on Normal Distribution Superposition Principle
文章编号:
1000-128X(2020)06-0020-05
作者:
梁鑫丁叁叁黄 超虞大联
(中车青岛四方机车车辆股份有限公司,山东青岛 266111)
Author(s):
LIANG Xin DING Sansan HUANG Chao YU Dalian
( CRRC Qingdao Sifang Co., Ltd., Qingdao, Shandong 266111, China )
关键词:
高速磁浮线路不平顺正态分布叠加随机过程预测方法
Keywords:
high-speed maglev track irregularity normal distribution superposition stochastic process prediction method
分类号:
U237;U212.3
DOI:
10.13890/j.issn.1000-128x.2020.06.005
文献标志码:
A
摘要:
为实现高速磁浮线路不平顺准确预测,结合高速磁浮线路结构组成和技术特点,提出一种基于正态分布叠加原理的高速磁浮线路不平顺拟合方法。以线路轨道特征长度(l=l 032 mm)为基准,分析特征长度l、导向基础长度3l以及桥梁1/2倍跨距、1倍跨距以及2倍跨距处的节点偏差特征,采用线性插值方法拟合其他非节点处的偏差,通过偏差叠加方式获得线路时域不平顺数据。通过与实测数据对比分析可知,高速磁浮线路不平顺具有明显周期性,特别是垂向不平顺具有与桥梁一阶垂弯一致的周期频率;在短波(λ<5 m)范围内高速磁浮谱高于传统轮轨谱,在中长波范围内高速磁浮谱介于中国高速无砟谱与德国低干扰谱之间。该不平顺的预测方法对已知建设规范的线路谱预测具有普通适用性。
Abstract:
In order to predict for maglev track irregularity accurately, according to structure composition and technical characteristics of high-speed maglev track line, a irregularity fitting method of high-speed maglev track based on normal distribution superposition principle was applied. Based on the characteristic length of track (l=l 032 mm), the deviation characteristics was analyzed at the position of the length l, guide foundation length 3l, bridge 1/2 span length, span and 2 times span. The deviations of other non-nodes were fitted by linear interpolation method, the time domain track irregularity data was obtained by deviation superposition. Compared with the measured data, it was found that the irregularity of high-speed maglev track was obviously periodic, especially, the vertical irregularity had the same periodic frequency as the first order vertical bending of the bridge; In the short wave range(λ<5 m), the high-speed maglev spectrum was higher than the traditional wheel/rail spectrum. The range of medium and long waves of high-speed maglev was between the high speed ballastless spectrum in China and the low interference spectrum in Germany. The irregularity prediction method had general applicability to the line spectrum prediction of known construction technical requirement.

参考文献/References:

[1] 田国英, 高建敏, 翟婉明. 利用高速铁路轨道不平顺谱估算不平顺限值的方法[J]. 铁道学报, 2015, 37(1): 83-90.
 [2] SHI J, FANG W S, WANG Y J, et al. Measurements and analysis of track irregularities on high speed maglev line[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(6): 385-394.
[3] 张耿, 李杰, 杨子敬. 低速磁浮轨道不平顺功率谱研究[J]. 铁道学报, 2011, 33(10): 73-78.
[4] 郑树彬, 林建辉, 林国斌. 高速磁浮轨道长波不平顺检测系统设计[J]. 仪表仪器学报, 2007, 28(10): 1781-1786.
[5] CAI Y, CHEN S S, ROTE D M. Vehicle/Guideway dynamic interaction in maglev system[J]. Journal of Dynamic Systems, Measurement and Control, 1992, 118(3): 61.
[6] 时瑾, 魏庆朝. 线路不平顺对高速磁浮铁路动力响应特性的影响[J]. 工程力学, 2006, 23(1): 154-159.
[7] 翟婉明, 赵春发. 磁浮车辆/轨道系统动力学(I)——磁/轨相互作用及稳定性[J]. 机械工程学报, 2005, 41(7): 1-10.
[8] 赵春发, 翟婉明. 磁浮车辆/轨道系统动力学(II)——建模与仿真[J]. 机械工程学报, 2005, 41(8): 163-175.
[9] ZHAO C F, ZHAI W M. Maglev vehicle guideway vertical random response and ride quality[J]. Vehicle System Dynamics, 2002, 38(3): 185-210.
 [10] 邓亚士, 魏庆朝, 时瑾. 高速磁浮桥上轨道梁振动特性初步研究[J]. 振动工程学报, 2008, 21(3): 248-254.
[11] DIGNATH F, ZHENG Q, SCHMITZ P, et al. Fast computable model of the levitation and guidance control for multibody simulation of the Transrapid MAGLEV Vehicle[C]//The Fourth International Conference on Railway Technology: Research, Development and Maintenance, September 3-7, 2018, Sitges, Barcelona, Spain. Amsterdam: ELSEVIER, 2018.
 [12] 时瑾, 魏庆超, 万传风, 等. 随机不平顺激励下磁浮车辆轨道梁动力响应[J]. 力学学报, 2006, 38(6): 850-857.
 [13] DELLNITZ M, DIGNATH F, FLA?KAMP K, et al. Modelling and analysis of the nonlinear dynamics of the transrapid and its guideway[C]//Progress in Industrial Mathematics at ECMI 2010. Heidelberg: Springer, 2012, 17: 113-123.
[14] 梁鑫, 罗世辉, 马卫华. 常导磁浮列车动态磁轨关系研究[J]. 铁道学报, 2013, 35(9): 39-45.
[15] POPP K, SCHIEHLEN W. Dynamics of magnetically levitated vehicles on flexible guideways[J]. Vehicle System Dynamics, 1975, 4(2/3): 195-199.
[16] ZHENG Q H, DIGNATH F, SCHMID P, et al. Ride Comfort Transfer Function for the MAGLEV Vehicle Transrapid[C]//The Fourth International Conference on Railway Technology: Research, Development and Maintenance, September 3-7, 2018, Sitges, Barcelona, Spain. Amsterdam: ELSEVIER, 2018.

相似文献/References:

[1]李萍,胡雯雯.磁浮轨道梁不平顺对悬浮状态的影响分析[J].机车电传动,2016,(03):65.[doi:10.13890/j.issn.1000-128x.2016.03.016]
 LI Ping,HU Wenwen.Influence Analysis of Magnetic Track Beam Irregularity on the Suspended State[J].Electric Drive for Locomotives,2016,(06):65.[doi:10.13890/j.issn.1000-128x.2016.03.016]
[2]汤钧元,吴 峻,李洪鲁. 高速磁浮动态轨道检测系统数据处理流程研究[J].机车电传动,2019,(05):1.[doi:10.13890/j.issn.1000-128x.2019.05.121]
 TANG Junyuan,WU Jun,LI Honglu. Data Analysis Process Design of High-speed Maglev Dynamic Track Detection System[J].Electric Drive for Locomotives,2019,(06):1.[doi:10.13890/j.issn.1000-128x.2019.05.121]
[3]汤钧元,吴 峻,李洪鲁.高速磁浮动态轨道检测系统数据处理流程研究[J].机车电传动,2019,(05):147.[doi:10.13890/j.issn.1000-128x.2019.05.121]
 TANG Junyuan,WU Jun,LI Honglu.Data Analysis Process Design of High-speed Maglev DynamicTrack Detection System[J].Electric Drive for Locomotives,2019,(06):147.[doi:10.13890/j.issn.1000-128x.2019.05.121]
[4]梅文庆,南永辉,廖 武,等.基于滑模观测器的LSLSM位置辨识研究[J].机车电传动,2020,(01):79.[doi:10.13890/j.issn.1000-128x.2020.01.016]
 MEI Wenqing,NAN Yonghui,LIAO Wu,et al.Research on Position Identification of Long Stator Linear SynchronousMotor Based on Sliding Mode Observer[J].Electric Drive for Locomotives,2020,(06):79.[doi:10.13890/j.issn.1000-128x.2020.01.016]
[5]丁叁叁,葛剑敏,郭建强,等.高速磁浮系统噪声排放评估及应对措施[J].机车电传动,2020,(06):6.[doi:10.13890/j.issn.1000-128x.2020.06.002]
 DING Sansan,GE Jianmin,GUO Jianqiang,et al.Noise Emission Assessment and Countermeasures of High-speed Maglev System[J].Electric Drive for Locomotives,2020,(06):6.[doi:10.13890/j.issn.1000-128x.2020.06.002]
[6]田恺,晏 锐,万 鹏.高速磁浮无线通信技术研究现状及发展[J].机车电传动,2020,(06):25.[doi:10.13890/j.issn.1000-128x.2020.06.006]
 TIAN Kai,YAN Rui,WAN Peng.Research Status and Development of High-speed Maglev Wireless Communication Technology[J].Electric Drive for Locomotives,2020,(06):25.[doi:10.13890/j.issn.1000-128x.2020.06.006]
[7]覃松涛,周厚文,明小松.广深港高速磁浮铁路客流预测的实践与探索[J].机车电传动,2020,(06):42.[doi:10.13890/j.issn.1000-128x.2020.06.009]
 QIN Songtao,ZHOU Houwen,MING Xiaosong.Practice and Exploration on Passenger Flow Forecast of Guangzhou-Shenzhen-Hong Kong High-speed Maglev Railway[J].Electric Drive for Locomotives,2020,(06):42.[doi:10.13890/j.issn.1000-128x.2020.06.009]
[8]王明星,陈萍,杨昌锋,等.高速磁浮列车涡流制动力仿真分析[J].机车电传动,2020,(06):47.[doi:10.13890/j.issn.1000-128x.2020.06.010]
 WANG Mingxing,CHEN Ping,YANG Changfeng,et al.Simulation Analysis on Eddy Current Braking Force of High-speed Maglev Train[J].Electric Drive for Locomotives,2020,(06):47.[doi:10.13890/j.issn.1000-128x.2020.06.010]
[9]田毅,栾 瑾,王晓红,等.高速磁浮无线通信系统仿真平台开发[J].机车电传动,2020,(06):61.[doi:10.13890/j.issn.1000-128x.2020.06.013]
 TIAN Yi,LUAN Jin,WANG Xiaohong,et al.Development of Wireless Communication Simulation Platform for High-speed Maglev System[J].Electric Drive for Locomotives,2020,(06):61.[doi:10.13890/j.issn.1000-128x.2020.06.013]

备注/Memo

备注/Memo:
作者简介:梁 鑫(1984—),男,博士,现从事高速磁浮动力学及系统振动控制研究工作。
更新日期/Last Update: 2020-11-10